BACHELOR OF COMPUTER APPLICATIONS (BCA) (REVISED)

Term-End Examination

June, 2023

BCS-054 : COMPUTE ORIENTED
NUMERICAL TECHNIQUES

Time: 3 Hours

Maximum Marks : 100

- Note: (i) Any calculator is allowed during examination.
 - (ii) Question No. 1 is compulsory. Attempt any three more from the next four questions.
- 1. (a) Use Gauss elimination method to solve the system of linear equations given below: 6

$$x_1 + x_2 + x_3 = 3$$

 $4x_1 + 3x_2 + 4x_3 = 8$
 $9x_1 + 3x_2 + 4x_3 = 7$

(b) Use Gauss Jacobi method to solve the system of linear equations given below (results should be correct upto two decimal places only):

$$-4x_1 + x_2 + 10x_3 = 21$$

$$5x_1 - x_2 + x_3 = 14$$

$$2x_1 + 8x_2 - x_3 = -7.$$

- (c) Use Bisection method to find positive root of the equation $x^3 + 4x^2 10 = 0$, correct upto two places of decimal.
- (d) Perform the following: 6
 - (i) Express operator E in terms of operator δ .
 - (ii) Express operator μ in terms of operator δ .
- (e) Determine the Newton's forward difference interpolating polynomial that satisfies the data tabulated ahead:6

\boldsymbol{x}	f(x)
1	1
2	4
3	9
4	16
5	25

Also, find the value of y'(x) at x = 1.7. Determine y' and y'' at x = 2.25, using (f) Newton's Forward Difference (FD) formula for the data given below: 5

x	$y = \sqrt{x}$
1.5	1.2247
2.0	1.4142
2.5	1.5811
3.0	1.7320
3.5	1.8708
I .	

Calculate the value of the (g) integral $\int_{4}^{5.2} \log x \, dx, \quad \text{using} \quad \text{Trapezoidal}$ 5 (assume h = 0.2).

- 2. (a) Use Euler method to find the solution of y' = f(t, y) = t + y, given y(0) = 1, take h = 0.2 and find solution on [0, 0.8].
 - (b) Find Maclaurin's series of $f(x) = e^x$ around x = 0.
 - (c) Determine approximate root of the equation:

 $con x - xe^x = 0$

using Secant method with two initial approximations as $x_0 = 0$ and $x_1 = 1$. Perform two iterations.

- 3. (a) Write Newton-Raphson iterative scheme to find inverse of an integer number N. Hence find inverse of 17 correct upto 4 places of decimal starting with 0.05.
 - (b) Write expressions for Δ, ∇, δ and μ operators in terms of operator E.

(c) Find Lagrange's interpolating polynomial for the data given below:

x	f(x)
$\frac{1}{4}$	-1
$\frac{1}{3}$	2
1	d from S7

- 4. (a) Use Divided difference table to find the value of (b,b,c), for $f(x)=x^3$.
 - (b) Use Stirling's formula for differentiation on the data given below, to find the value of x for which f(x) attains its maximum value:

10

x	y = f(x)
1	7
2	15
3	21
4	19
5	3

- (c) Evaluate $\int_0^1 \frac{dx}{1+x^2}$ using Simpon's rule, subdivide the interval (0, 1) into 6 equal parts.
- 5. (a) Solve the Initial Value Problem (IVP) $y' = -ty^2$, y(2) = 1. Also, find y (2.1) and y (2.2) with h = 0.1, using modified Euler's method.
 - (b) Use classical RX method of order 4 to solve the $XY = 2y + 3e^t$, y(0) = 0; and find y(0.1), y(0.2) and y(0.3).

BCS-054 5,520